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ABSTRACT 

We analytically investigate gravitational radiation induced by a test particle 
falling into an extreme Kerr black hole. Assuming the radiation is dominated 

by the infinite sequence of quasi-normal modes which has the limiting frequency 

rn/ (2M),  where m is an azimuthal eigenvalue and M is the mass of the black 

hole, we find the radiated energy diverges logarithmically in time. Then we 
S F  

evaluate the back reaction to the black hole by appealing to the energy and 

angular momentum conservation laws. We find the radiation has a tendency to 
~3 
2 
rnk4-l  

increase the ratio of the angular momentum to mass of the black hole, which azcU P q 4 
l f f i  

ffi 3 >4 E d 4  rd 
I M G  
4 0  
m a.l-4 

is completely different from non-extreme case, while the contribution of the test 
particle is to decrease it. 
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1. Introduction 

Coalescence of binary neutron stars or black holes has been considered as one 

of the strongest sources of the gravitational radiation. As for the total energy ra- 

diated in the process of the coalescence, several analyses have been done. Gilden 

and Shapiro[’]calculated the head-on collision of two neutron stars by Newto- 

nian hydrodynamics code and obtained the typical efficiency ( A E I M )  of 0.1% 

for colliding 1.4M0 neutron stars. As for fully general relativistic calculations, 

Smarr[’lperformed simulations of the head-on collisions of two black holes and 

obtained the efficiency of S 0.1%. Stark and PiranlS1calculated the formation 

process of rotating black holes and obtained the efficiency of 5 0.1%. One of 
the important results in these calculations is the wave pattern is characterized 

by a quasi-normal mode (QNM) of the black hole except for the very early stage. 

Especially the wave pattern by Stark and Piran% very similar to that from 

a perturbation calculation of a rotating dust ring of mass p falling into a Kerr 

black hole of mass M (> p)! The collapsing dust ring mimics the flattening 

in the equatorial plane of the collapsing polytrope. One also finds very good 

agreement in the amplitudes if one scales p up to the reduced mass of the system 

which is no longer infinitesimal. These experiences suggest us that the pertur- 

bation calculations are a very good guide to fully nonlinear general relativistic 

calculations !“I 

One may think that the above fully nonlinear simulations show the weakness 

of the sources of gravitational waves. However all these calculations are restricted 

to axially symmetric systems. Perturbation calculations for the efficiency of the 

emission of gravitational waves from a test particle falling into a Schwarzschild or 

Kerr black hole for various ca~es~’~show that in general the efficiency for axially 

symmetric systems is much smaller than that for non-axially symmetric systems 

due to the phase cancellation effects? The perturbation calculations for Kerr 

cases show that the wave pattern is also dominated by a QNM of the black 

hole which depends on the azimuthal eigenvalue m. The energy from a particle 

[4,r#I 
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with orbital angular momentum falling into a Kerr black hole increases with the 

increase in the Kerr parameter a. This is due to the fact that the imaginary part 

of the fundamental QNM for m = 2 goes to zero in the limit of a = M where M 
is the mass of the black hole. The small imaginary part means the large damping 

time, hence much energy. However what will happen for an extreme Kerr black 

hole (a = M) case was not clear in the previous studies since they were only 

for a 5 0.99M. In this paper we shall study analytically the gravitational waves 

emitted from a particle falling into an extreme Kerr black hole as a first step to 

know the maximum efficiency of the gravitational radiation. 

[W81 

One may think that the formation of an extreme Kerr black hole is of only 

academic interest. But it is not so. Observationally there are 10 binary pulsars 

at present. Eight of them have small eccentricity and small mass companion 

(S 0.4M0). Three of them have large eccentricity and large mass companion 

(- 1.4M0). Especially PSR1913+16 is believed to consist of two neutron stars 

of mass 1.445M0 and 1.384M0!O1 Due to the emission of gravitational waves, two 

neutron stars in PSR1913+16 will coalesce in - lo8 yrs. The recently discovered 

binary millisecond pulsar PSR0021-72A['01will coalesce in much shorter time - 
lo6 yrs. Under the assumption of a steady state, it is estimated that coalescence 

of binary neutron stars will occur - 10 events/year up to a distance of 100 Mpc. 
Therefore they can be relevant sources of gravitational waves. Now the total 

mass of such a binary like PSR1913+16 is much larger than the maximum mass 

of the neutron star. Therefore a natural final destiny of such a coalescence is the 

formation of a black hole. Moreover the total angular momentum of the system 

when the coalescence begins is larger than that for the extreme Kerr black hole. 

So the final black hole can be an extreme Kerr black hole. 

This paper is organized as follows. In $2, we review the property of QNMs of 

the extreme Kerr black hole. In $3, the wave form of the gravitational radiation 

induced by a test particle falling into a black hole is analytically estimated. 

The effect of back reaction is also considered. $5 is devoted to conclusions and 

astrophysical implications of the results. 
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2. QNMs of the extreme Kerr black hole 

There exist infinite number of QNMs which accumulate onto the critical 

frequency w, = a m / ( 2 M ~ + )  = m / ( 2 M )  for a = M. This occurs for modes with 

Iml = I and it has been shown both analytically by Detweiler‘”]and numerically 

by Leaver!”’ Following Detweiler, we first briefly review the derivation of this 

fact, rewrite the result in the form more convenient for us, and then discuss the 

properties of the QNMs. 

The QNMs correspond to complex zeros of Zin (w) ,  the amplitude of ingoing 

radiation at infinity of the mode which is purely ingoing at the horizon, called the 

”in” mode. Its form at a - M has been discussed in Appendix A of Teukolsky 

and Press!131 Taking the limit a -+ M ,  one finds that 

r(-2i6)r(i  - 2 i q  
q8 + 1/2 - i(2; + 6))r(-s + 1/2 - i(2b + 6)) ’ a(-6,&) = 

a( 6, &)  COS^ A( 2; - S) 
T = l  a(-6,;) I =  coshx(2; + 6) ’ 

-a( 6, &) 
e = [ 4 - 6 4 ]  ’ 

with 8 being the spin of the wave (3 = f 2  for gravitational waves) and ,A, the 

eigenvalue of the spin-weighted spheroidal harmonic which depends on &, I and 
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r n  (for notational simplicity, we omit the angular indices (Z,m) unless there is a 

chance of confusion). For our purpose, we shall take 8 = -2 and suppress the 

spin indices in the following. In addition, it is known that 6 is real for the case 

of our interest (;.e., for all modes with Is1 = 2 and Iml = 12 2 ,  where m > 0 for 

Re(w) > 0 and m < 0 for Re(w) < 0) .  Then it can be taken as a positive 

number without loss of generality. 

[ISJ41  

For later convenience, we trasslate the above formula for Zin into the am- 

plitude din of the corresponding ”in” mode solution for the equation derived 

by Sasaki and Nakamura;’”which has a nice property of being regular at both 

infinity and horizon. The derivation of the relation 

in the Appendix. One finds 

7 2  
A .  tn = f i g Z i n .  

Since the infinite sequence of QNMs, which is 

the square bracket term in Eq.(2.1), appears for G 
for T - 0), one may replace G by Gc in the rest of 

between Zin and Ain is given 

(2.3) 

given by solving for zeros of 

very close to Gc = m/2  ( i e . ,  

the expression (2.1) or (2.2). 

Letting -GT z,  one obtains after a straightforward algebra that 

(2.4) Ain(z; 2,) = ei9O Z - coshn(2Gc + 1/2-i(23,+6) 

iGC sinh 2n6 

where 
do =arg[a(-6,Gc)] -(2Gc+6)ln8, 

6,, = 6 - 261n8. 

Then it is readily seen that the zeros of din are given by 

for any (large) positive integers of n, where the phase cpc is given by 

1 
cpc = --lnr 

26 

= -1n 1 -  cosh n(2Gc + 6) 
cash n(2Gc - 6) 
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In terms of LI, these QNM frequencies are 

To see the properties of LIn in more details, let us rewrite the above result by 

noting the expression (2.7) for the phase cpc and the fact that LIc = m/2. We 

then obtain 

m 2 8 2nw 2 8 2nw 
G,, = - - -e+ cos 1cpcl - i-e%- sin 1cpcl, 

2 m  Iml 
where 

] < 7 r .  1 [ cosh7r( Iml + 6) 
= 26 In coshx( Iml - 6) 

Thus the imaginary part is always negative, irrespective of the sign of m. Note 
II = -  In any 

case, this implies that an extreme Kerr black hole is stable against the excitation 

of a finite number of the QNMs belonging to the infinite sequence given above. 

However, since the imaginary part tends to zero as n approaches infinity, it is 

not obvious that the excitation of an infinite number of the QNMs would not 

lead to some kind of instability. In fact, we shall see in the next section that the 

radiation induced by a test particle diverges logarithmically in general. 

also that the QNMs of Eq.(2.9) have the symmetry 
Wn;l,m' 

3. Gravitational radiation induced by a test particle 

In this section, we investigate analytically the wave form of gravitational 

radiation induced by a test particle of energy E falling into an extreme Kerr 

black hole of mass M. We assume E << M. 

The basic equation we consider is the radial equation derived in Ref.15 which 

takes the form, 

d2 [s- 
where the explicit forms of 3 and U, and the relation of the source term S to 

that of the original Teukolsky equation are given in Ref.15. Here we only mention 
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that 3 and U vanish sufficiently rapidly for both r* = foo, and so does S for 

any trajectory of a test particle. 

Let Xin and Xout be the homogeneous solutions to Eq.(3.1) ( ;.e., with S = 0) 

whose boundary conditions are given by 

e- ikt*  for T +  -+ -00: 

x i n  -+ A. an e-iwr* + out eiwr* for r* -+ 3-00, 

B. e- ikr* + B eikr* for T* + -00; 

for T +  -+ +00 ,  

out 

where k: = w - mw+ and w+ is the angular velocity of the horizon. Then the 

solution of Eq.(3.1) can be expressed as 

XinSdr*' + X. an ( T * )  i ]  XOutSdr*' 
- W  t 

where W is the Wronskian of X i ,  and Xout; 

x Out -- dXin dr* - 2iwdin(w). dXout W ( w )  = x. - - 
dr+ 

Since we are interested in the radiation emitted to infinity, we only need the form 

of X at T* + +w, which becomes 

Let h+ and h,  be amplitudes of the usual plus and cross modes, respectively, 

of gravitational waves at infinity (Le., the 1 / ~  part of the metric perturbation) 
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I l S l  and let h = h, + ih,. Then h is given in terms of G and din as 

where SG is the 9 = -2 spin-weighted spheroidal function, u = t - T* is the 

retarded time, co = Ag(Arm + 2) - 12(a2w2 - maw) - 12iMw and the mode 

indices (Z,m) are recovered to avoid ambiguity. 

Let us now evaluate the above integral formula for h. Although it can only 

be done numerically in general, the late time behavior of h can be approximately 

evaluated if one notes the fact that it is dominated by QNMs which are excited by 
a test particle. Furthermore, the dominant contribution comes from those QNMs 

which are least damped. In the present case, they are the ones we obtained in 

the previous section. 

Assuming that the integrant vanishes at large IwI on the lower half complex 

plane of w (which should be true for large positive u), the integral in Eq.(3.6) is 

given approximately by the sum of residues of the integrant at poles of l/din(u) 

which are the QNM frequencies; 

The residues Res ( l /d jn(u) ;wn)  can be calculated from Eq.(2.4). Inserting the 

result into Eq.(3.7) and approximating all w, by we(=  G J M )  except z, in the 

residues and the exponent of we obtain 

E c ,-i90 (1/2+i(2b-b)) sinh 2n6 
T 

h - - -  
6 cosh n(2GC + 6) 

l ,m=fl  

2nn - Bo 
26 

2nn - Bo - (k + i(2bC - 6)) - ~u exp (- 26 ) 
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where 
e i Q c  P = ; ; c , *  

Note that the real part of p is positive definite (see Eq.(2.9)). 

Now we evaluate the sum over n in the above equation. Let N be a large 

positive integer and consider the sum over n 2 N. An inspection of Eqt(3.8) 

shows that this is equivalent to replacing 8, by 6, - 2N7r and summing over all 

n 2 0. Furthermore, since the important contribution comes from large n, the 

sum over n can be replaced by an integral; 

00 

6 -+6 / d z  exp [-nz - utle-'] -F(n,u;  u), 
7r 7r 

0 

(3.9) 

where 
1 
2 

n = - +i(2cjc - S), 

u =@e+. 
6 -2Nx 

The evaluation of the function F(n, u; u) is given in Appendix B. It is expressed 
in terms of the incomplete gamma function as 

F(K, u; 21) = (uu)-'Cy(n, 1/21) ,  (3.10) 

where note that ~ ( n ,  00) = r(n). Using Eq.(3.10), we finally arrive at the wave 

form at large u; 

(3.11) 

where the phase of ibc should be taken as 7r/2 if cjc > 0 and -7r/2 if bc < 0. 
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The most interesting feature of the wave form is that Ihl a u-'I2 for u + 00. 

This implies that the integrated flux of gravitational radiation diverges logarith- 

mically for u + 00. Thus the extreme Kerr black hole seems marginally unstable 

as suggested by Detweiler!" However, the above analysis neglects the presence 

of a test particle and the effect of radiation reaction. Although there is no estab- 

lished method for computing the radiation reaction, one may estimate the effect 

by appealing to the energy and angular momentum conservation laws. 

Let (M, M 2 )  be the mass and angular momentum, respectively, of the initial 

(extreme Kerr) black hole, ( E ,  j) be those of a test particle, and (Er, Jr) be those 

of gravitational radiation emitted to infinity. Then the final mass and angular 

momentum of the black hole, ( M f  , J f  ) are given by 

(3.12) 
M 

M2 M2 

M f  = M + & - E r ;  

Lo[($) '] .  - = O ( M ) ,  j e 
J f  = M 2 + j - J , ;  

where it is assumed that there is no incoming radiation from infinity. Inserting 

the above into the relation J = M2q , solving for Aq ( E  q - l), and retaining 

the terms up to O [ ( E / M ) ~ ]  we obtain 
f f f  f 

(3.13) 2 M e - j  e2 2 M E r - J r  
( M  + e)2 M 2  

-- 
M2 

A q = -  

It is known that any particle which can fall into the extreme Kerr black hole 

must have e 2 j / (2M)!"]  Hence if e - j / ( 2 M )  = O(e), the first term dominates 

over the rest and one has Aq < 0. However, if e - j / ( 2 M )  << e ,  all the terms 

may contribute equally to Aq. To consider such a case, let us parametrize j as 

j = 2 M e  1 b- , ( - 2 
where b is a positive constant of order unity. Then 

c2 2MEr - Jr 
M2 M2 

Aq = -(1+ 2b)- + 

(3.14) 

(3.15) 
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It is apparent that the contribution of the test particle is still negative. On the 

other hand, it is not at all clear if the second term is also negative definite, or if it 

is always smaller in magnitude than the first term. To investigate this problem, 

note that E,  and J, themselves cannot be evaluated individually, since they are 

logarithmically divergent. Instead, we evaluate the energy flux dE,/dir and the 

angular momentum flux dJ,/du. We have 

(3.16) 

where dq,/du means the part of dqldu which is due to radiation. 

The formulas for the radiated energy flux and angular momentum flux are 

dE, 1 
du 167r 
-- - -- J Ih12r2dfl, 

+-+a0 

dJ, 1 - = -.- 
du 167r 

Re ("I> r 2 d f l ,  
(3.17) 

where h = Oh/Ou and h' = Oh/&. Though the precise evaluation of dEr/du 

and dJ,/du can be done only if the motion of a test particle is specified and only 

by a careful numerical analysis, a qualitative estimate can be done by using the 

result obtained in $3, assuming that the QNMs give the dominant contribution 

to radiation. From Eq.(3.11), for each m = f l  component, we find 

iw,uy(n, vu) (3.18) 
h' = imh, 

where we have suppressed the indices (2,m) for h. Inserting the above into 

Eqs.( 3.17), we obtain 

(3.19) 
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where only the terms that are important at large u have been retained. Then 

noting that wc = GC/M = /(2M), Eq.(3.16) gives 

16 sinh2(2d) e-T(1F6) 

1 cosh ~ ( 1  -f: 6) cosh’ T ( Z  f 6) 

1 Ih(’T2dfl. 
- m(m - 6) 

16rM2u l,m=fl r-+w 
(2) - 

E G z , ~  
c0 

(3.20) 

Now let us evaluate the sign of dqr/du. To do so, it should be reminded that 

the Teukolsky equation has the symmetry such that 

for any physical amplitude. In particular, this implies 

where G,,, is the amplitude appearing in Eq.(3.11). Hence IhlImJ2 and Ihzl-,l2 
are not independent and one has to sum the both terms if one wants to know the 

sign of (dn,/du),. From Eq.(3.11), we find 

2 

(3.22) 

where the upper and lower signs correspond to m = 1 and m = -1, respectively. 

Hence ( d q , l d ~ ) ~  is given by 

2 
(3.23) ( 2 ~ 6 )  I?-*(‘-~) 

T( I - 6) cosh2 T ( Z  + 6) 

I Thus the sign of (dqr/du), depends on the magnitude of 6. 
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For 1 5 6, one can evaluate b approximately by using Table 1 of Press and 

Teukolsky!"] One finds b,-2 - x 2.05 > 2, while 6 < I for I 2 3. The latter 

fact implies ( d q r / d u ) l  is positive for I 2 3. As for I = 2, a direct evaluation of 

the square bracket term in the last line of Eq.(3.23) shows it is also positive. 

Hence we conclude that dq,/du is positive, ;.e., the radiation reaction works in 

favor of the increme in q. We mention that since d q r / d u  oc u - ~ ,  its integral 

Aqr = J'-(dq,/du)du is finite, hence can be computed in principle if the test 

particle trajectory is given. Then the result should take the form, 

E2 
= 7)p, (3.24) 

where 71 is the efficiency factor which is a function of parameters of the trajectory. 

For a < 1 it has been shown that Aqt is negative for all infalling orbits!'] Thus 

the above result shows a completely distinct nature of an extreme Kerr black 

hole. 

4. Conclusions 

In the lowest order of e / M ,  it is known that a test particle falling into an 
extreme Kerr black hole cannot increase the value of a / M  (E q )  above unity:'']no 

matter what the energy e and the angular momentum j of the test particle are, 

provided e / M  << 1 and j / M 2  < 1. This fact is in accordance with the cosmic 

censorship hypothesis["'and with Hawking's area theorem:*' since the area of 

the horizon A = 87rMr+ can increase only if q decreases, if it is unity in the 

beginning. Hence as long as the contribution of the test particle to the change of 

q is O(e /M) ,  we have A q  < 0 .  In the case of purely gravitational perturbations 

without a test particle, it is known that the area theorem holds for any value of 

q < l!'" Taking the limit q + 1 from below, one can extend this result and show 

that d q / d u  < 0 holds for q = 1. However, for certain test particle trajectories 

(j=2Me), the contribution to Aq can be O [ ( E / M ) ~ ) ] .  In such a case, the result 



in $3 shows that the energy and angular momentum radiated away, which are of 

O [ ( E / M ) ~ ) ] ,  is important to determine the value of q. If q decreases eventually, 

the black hole will settle down to a stable non-extreme Kerr black hole and the 

logarithmic divergence of the total flux would not have any physical significance. 

On the other hand, if the result is opposite, there arises a possibility of violating 

the cosmic censorship, or at least a possibility of maintaining the value of q very 

close to unity for sufficiently long time. Given the evidences that the cosmic 

censorship does not fail in the both cases of the test particle argument and 

purely gravitational perturbations, perhaps we should be skeptical about the 

former possibility. 

As we noted in the introduction the total angular momentum of the coalescing 

binary neutron stars before the collapse is much larger than that of the extreme 

Kerr black hole. In a sense one can say that the total angular momentum of 

the extreme Kerr black hole is the lowest angular momentum for the binary. 

Unless the system loses its angular momentum down to the angular momentum 

of the extreme Kerr black hole, the system cannot settle down to a single Kerr 

black hole. The system before the final Kerr black hole probably consists of a 

Kerr black hole in the center and a radiating envelope around it. So there may 

exist a case in which the value of q can remain sufficiently close to unity during 

the radiating process and consequently the efficiency of gravitational radiation 

can be very high. Pushing this thought further boldly, one may speculate that 

during the gravitational collapse of a rapidly rotating star or a binary system, 

an extreme Kerr black hole is effectively formed and is kept extreme throughout 

the dynamical stage, emitting a substantial fraction of the rest mass energy in 

the form of gravitational waves. 

If the above conjecture is correct, we can make some astrophysical impli- 

cations of our results. Clark and Eardley'aolstudied the evolution of a binary 

neutron star system consists of neutron stars of mass 1.3Ma and 0.8Ma and 

estimated the gravitational waves emitted in the stable mass stripping phase. 

They obtained the total energy of the gravitational waves of 6 x los2 ergs which 
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is 1.5% of the rest mass. Recently Oohara and Nakamura'2'1performed Newto- 

nian 3D hydrodynamics calculations of coalescence of binary neutron stars of 

each mass 1.4M0. They are using 1403 grids in the ( t , y , z )  coordinates. They 

began the simulation when the two neutron stars just touch with each other and 

continued the simulation up to t = 2msec. The total radiated energy estimated 

by using the quadrupole formula was 2.6% of the rest mass in 2msec. This ef- 

ficiency can be compared with that extrapolated from perturbation calculations 

for a particle falling into a Kerr black hole with a 5 0.99M, which can be as high 

as 9% in an extreme case. As noted in Introduction, a plausible final destiny 

for coalescence of binary neutron stars is an extreme Kerr black hole. So the 

above conjecture suggests that the efficiency of the gravitational waves is much 

larger than the Newtonian simulations due to the contribution from the QNMs 

for the extreme Kerr black hole. So there is a possibility that 2 10% efficiency 

is achieved in reality. 

'4,7,(J 

Finally to confirm all the theoretical conjectures in this paper, the construc- 

tion of a 3D fully general relativistic code is strongly needed. 
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APPENDIX A 

Here, we derive the relation between the amplitudes Ain and Zin. For con- 

venience, we first list some of the coordinate variables which are frequently used 

here and in the text: 

T~ + a2 

A dT 9 dT* = 

dv = dt + dT* , 

K = (T' + a2)w - am, 

'&=z f i- A' d K  

where t ,  T and cp are the standard Boyer-Lindquist coordinates!"] Although we 

concentrate on the case a = M in this paper, the following discussion is valid 

ev'en for a # M as long as ( M  - a ) / M  a 1. 

The radial function used in Appendix A of Teukolsky and Press"" is of R, 
in the coordinates ( v ,  @), which we denote by R,. The radial function of the 

standard Teukolsky equation"" is of Y, in the coordinates ( t ,  c p ) ,  which we denote 
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by R,. The variables R, and Y, are related to each other by 

0 

Y -8  = (e) n,. 

Hence the corresponding radial functions are related to each other by 

Further, for 181 = 2, there is a simple relation between R, and R-,; 

R - ,Aa a (J+)4(AaR,) .  

From Eqs.(A.3) and (A.4), one has 

where fo is a constant which depends on the normalization of R-, and a-,. In 

what follows, we denote R-, by R and R-, by for notational simplicity. 

F'rom Eqs.(2.9) and (2.13) of Sasaki and Nakamura"'], our radial function X 
for the regularized equation is related to R by 

where f ,  g and h axe, to an extent, arbitrary functions of T except for cer- 

tain boundary conditions they must satisfy, but for definiteness we choose f = 

h =const. and g = (T ,  + a,)/? as given in Appendix B of Ref.15. Then X is 

expressed in terms of R as 

where fi is a constant. 
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c 

The asymptotic behavior of the "in" mode solution for X (denoted by Xin 
in the text, but here we omit the suffix) is 

for T -t T 

for T + 00, 

-i(w--rnw+)r* + '  
A .  e-iwr' + A  &r* 

tn out 

and that for R is 

for T -+ r+ ; 

R - + { l  z;, (7'/T+)' + ZOut (T+ /T )e l iwr *  for T -t 00 ,  
(A.9) 

where T+ = M + d m  is the radius of the horizon and w+ = a/(2Mr+) is the 

angular frequency of the horizon. Equations (A.8) and (A.9) fix the normalization 

of the radial functions. 

Now, from Eqm(A.7) - (A.9) and using the solution given in Appendix A of 

Ref.13, it is straightforward to show that Ain is related to Zin by 

7 2  
A .  an = a - Z  3 i n '  (A.lO) 

which we quoted in Eq.(2.3). 

APPENDIX B 

Here we evaluate the function F defined in Eq.(3.9); 

exp [-nc - vue-'] . 
0 

Expanding the integrant, we obtain 

(-1)" (vu)" e-"' 

n! 

00 00 

F(u)  = /dc e-K' 
n=O 0 

O0 (-1)n (YU)'C+" 

( IC + n)n! 
n=O 

=(vu)-K r(n, v u ) ,  
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where 7 ( ~ ,  z )  is the incomplete g a m m a  function. In particular, we have 

F ( U )  + (vU)-ar(K) ; -+ 00. 
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